

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	zope.location 4.0 documentation

zope.location

Contents:

	Using zope.location
	Location

	inside()

	LocationProxy

	LocationInterator()

	located()

	zope.location API
	zope.location.interfaces

	zope.location.location

	zope.location.traversing

	Hacking on zope.location
	Getting the Code

	Working in a virtualenv

	Using zc.buildout

	Using tox

	Contributing to zope.location

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Zope Foundation Contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	zope.location 4.0 documentation

Using zope.location

Location

The Location base class is a mix-in that defines __parent__ and
__name__ attributes.

Usage within an Object field:

>>> from zope.interface import implementer, Interface
>>> from zope.schema import Object
>>> from zope.schema.fieldproperty import FieldProperty
>>> from zope.location.interfaces import ILocation
>>> from zope.location.location import Location

>>> class IA(Interface):
... location = Object(schema=ILocation, required=False, default=None)
>>> @implementer(IA)
... class A(object):
... location = FieldProperty(IA['location'])

>>> a = A()
>>> a.location = Location()

>>> loc = Location(); loc.__name__ = u'foo'
>>> a.location = loc

>>> loc = Location(); loc.__name__ = None
>>> a.location = loc

>>> loc = Location(); loc.__name__ = 'foo'
>>> a.location = loc
Traceback (most recent call last):
...
WrongContainedType: ([WrongType('foo', <type 'unicode'>, '__name__')], 'location')

inside()

The inside function tells if l1 is inside l2. L1 is inside l2 if l2 is an
ancestor of l1.

>>> o1 = Location()
>>> o2 = Location(); o2.__parent__ = o1
>>> o3 = Location(); o3.__parent__ = o2
>>> o4 = Location(); o4.__parent__ = o3

>>> from zope.location.location import inside

>>> inside(o1, o1)
True

>>> inside(o2, o1)
True

>>> inside(o3, o1)
True

>>> inside(o4, o1)
True

>>> inside(o1, o4)
False

>>> inside(o1, None)
False

LocationProxy

LocationProxy is a non-picklable proxy that can be put around
objects that don’t implement ILocation.

>>> from zope.location.location import LocationProxy
>>> l = [1, 2, 3]
>>> ILocation.providedBy(l)
False
>>> p = LocationProxy(l, "Dad", "p")
>>> p
[1, 2, 3]
>>> ILocation.providedBy(p)
True
>>> p.__parent__
'Dad'
>>> p.__name__
'p'

>>> import pickle
>>> p2 = pickle.dumps(p)
Traceback (most recent call last):
...
TypeError: Not picklable

Proxies should get their doc strings from the object they proxy:

>>> p.__doc__ == l.__doc__
True

If we get a “located class” somehow, its doc string well be available
through proxy as well:

>>> class LocalClass(object):
... """This is class that can be located"""

>>> p = LocationProxy(LocalClass)
>>> p.__doc__ == LocalClass.__doc__
True

LocationInterator()

This function allows us to iterate over object and all its parents.

>>> from zope.location.location import LocationIterator

>>> o1 = Location()
>>> o2 = Location()
>>> o3 = Location()
>>> o3.__parent__ = o2
>>> o2.__parent__ = o1

>>> iter = LocationIterator(o3)
>>> iter.next() is o3
True
>>> iter.next() is o2
True
>>> iter.next() is o1
True
>>> iter.next()
Traceback (most recent call last):
...
StopIteration

located()

located locates an object in another and returns it:

>>> from zope.location.location import located
>>> a = Location()
>>> parent = Location()
>>> a_located = located(a, parent, 'a')
>>> a_located is a
True
>>> a_located.__parent__ is parent
True
>>> a_located.__name__
'a'

If we locate the object again, nothing special happens:

>>> a_located_2 = located(a_located, parent, 'a')
>>> a_located_2 is a_located
True

If the object does not provide ILocation an adapter can be provided:

>>> import zope.interface
>>> import zope.component
>>> sm = zope.component.getGlobalSiteManager()
>>> sm.registerAdapter(LocationProxy, required=(zope.interface.Interface,))

>>> l = [1, 2, 3]
>>> parent = Location()
>>> l_located = located(l, parent, 'l')
>>> l_located.__parent__ is parent
True
>>> l_located.__name__
'l'
>>> l_located is l
False
>>> type(l_located)
<class 'zope.location.location.LocationProxy'>
>>> l_located_2 = located(l_located, parent, 'l')
>>> l_located_2 is l_located
True

When changing the name, we still do not get a different proxied object:

>>> l_located_3 = located(l_located, parent, 'new-name')
>>> l_located_3 is l_located_2
True

>>> sm.unregisterAdapter(LocationProxy, required=(zope.interface.Interface,))
True

 Copyright 2012, Zope Foundation Contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	zope.location 4.0 documentation

zope.location API

zope.location.interfaces

Location framework interfaces

	
interface zope.location.interfaces.ILocation[source]

	Objects that can be located in a hierachy.

Given a parent and a name an object can be located within that parent. The
locatable object’s __name__ and __parent__ attributes store this
information.

Located objects form a hierarchy that can be used to build file-system-like
structures. For example in Zope ILocation is used to build URLs and to
support security machinery.

To retrieve an object from its parent using its name, the ISublocation
interface provides the sublocations method to iterate over all objects
located within the parent. The object searched for can be found by reading
each sublocation’s __name__ attribute.

	
__parent__

	The parent in the location hierarchy.

	
__name__

	The name within the parent

The object can be looked up from the parent’s sublocations using this name.

	
interface zope.location.interfaces.IContained[source]

	Extends: zope.location.interfaces.ILocation

Objects contained in containers.

	
interface zope.location.interfaces.ILocationInfo[source]

	Provides supplemental information for located objects.

Requires that the object has been given a location in a hierarchy.

	
getRoot()[source]

	Return the root object of the hierarchy.

	
getPath()[source]

	Return the physical path to the object as a string.

Uses ‘/’ as the path segment separator.

	
getParent()[source]

	Returns the container the object was traversed via.

Returns None if the object is a containment root.
Raises TypeError if the object doesn’t have enough context to get the
parent.

	
getParents()[source]

	Returns a list starting with the object’s parent followed by
each of its parents.

Raises a TypeError if the object is not connected to a containment
root.

	
getName()[source]

	Return the last segment of the physical path.

	
getNearestSite()[source]

	Return the site the object is contained in

If the object is a site, the object itself is returned.

	
interface zope.location.interfaces.ISublocations[source]

	Provide access to sublocations of an object.

All objects with the same parent object are called the sublocations of
that parent.

	
sublocations()[source]

	Return an iterable of the object’s sublocations.

	
interface zope.location.interfaces.IRoot[source]

	Marker interface to designate root objects within a location hierarchy.

	
exception zope.location.interfaces.LocationError[source]

	There is no object for a given location.

zope.location.location

Location support

	
class zope.location.location.Location[source]

	Mix-in that implements ILocation.

It provides the __parent__ and __name__ attributes.

	
zope.location.location.locate(obj, parent, name=None)[source]

	Update a location’s coordinates.

	
zope.location.location.located(obj, parent, name=None)[source]

	Ensure and return the location of an object.

Updates the location’s coordinates.

	
zope.location.location.LocationIterator(object)[source]

	Iterate over an object and all of its parents.

	
zope.location.location.inside(l1, l2)[source]

	Test whether l1 is a successor of l2.

l1 is a successor of l2 if l2 is in the chain of parents of l1 or l2
is l1.

	
class zope.location.location.LocationProxy(ob, container=None, name=None)[source]

	Location-object proxy

This is a non-picklable proxy that can be put around objects that
don’t implement ILocation.

zope.location.traversing

Classes to support implenting IContained

	
class zope.location.traversing.LocationPhysicallyLocatable(context)[source]

	Provide location information for location objects

>>> from zope.interface.verify import verifyObject
>>> from zope.location.interfaces import ILocationInfo
>>> from zope.location.location import Location
>>> from zope.location.traversing import LocationPhysicallyLocatable
>>> info = LocationPhysicallyLocatable(Location())
>>> verifyObject(ILocationInfo, info)
True

	
getRoot()[source]

	See ILocationInfo.

>>> from zope.interface import directlyProvides
>>> from zope.location.interfaces import IRoot
>>> from zope.location.location import Location
>>> from zope.location.traversing import LocationPhysicallyLocatable
>>> root = Location()
>>> directlyProvides(root, IRoot)
>>> LocationPhysicallyLocatable(root).getRoot() is root
True

>>> o1 = Location(); o1.__parent__ = root
>>> LocationPhysicallyLocatable(o1).getRoot() is root
True

>>> o2 = Location(); o2.__parent__ = o1
>>> LocationPhysicallyLocatable(o2).getRoot() is root
True

We’ll get a TypeError if we try to get the location fo a
rootless object:

>>> o1.__parent__ = None
>>> LocationPhysicallyLocatable(o1).getRoot()
Traceback (most recent call last):
...
TypeError: Not enough context to determine location root
>>> LocationPhysicallyLocatable(o2).getRoot()
Traceback (most recent call last):
...
TypeError: Not enough context to determine location root

If we screw up and create a location cycle, it will be caught:

>>> o1.__parent__ = o2
>>> LocationPhysicallyLocatable(o1).getRoot()
Traceback (most recent call last):
...
TypeError: Maximum location depth exceeded, probably due to a a location cycle.

	
getPath()[source]

	See ILocationInfo.

>>> from zope.interface import directlyProvides
>>> from zope.location.interfaces import IRoot
>>> from zope.location.location import Location
>>> from zope.location.traversing import LocationPhysicallyLocatable
>>> root = Location()
>>> directlyProvides(root, IRoot)
>>> LocationPhysicallyLocatable(root).getPath()
u'/'

>>> o1 = Location(); o1.__parent__ = root; o1.__name__ = 'o1'
>>> LocationPhysicallyLocatable(o1).getPath()
u'/o1'

>>> o2 = Location(); o2.__parent__ = o1; o2.__name__ = u'o2'
>>> LocationPhysicallyLocatable(o2).getPath()
u'/o1/o2'

It is an error to get the path of a rootless location:

>>> o1.__parent__ = None
>>> LocationPhysicallyLocatable(o1).getPath()
Traceback (most recent call last):
...
TypeError: Not enough context to determine location root

>>> LocationPhysicallyLocatable(o2).getPath()
Traceback (most recent call last):
...
TypeError: Not enough context to determine location root

If we screw up and create a location cycle, it will be caught:

>>> o1.__parent__ = o2
>>> LocationPhysicallyLocatable(o1).getPath()
Traceback (most recent call last):
...
TypeError: Maximum location depth exceeded, """ \
 """probably due to a a location cycle.

	
getParent()[source]

	See ILocationInfo.

>>> from zope.interface import directlyProvides
>>> from zope.location.interfaces import IRoot
>>> from zope.location.location import Location
>>> from zope.location.traversing import LocationPhysicallyLocatable
>>> root = Location()
>>> directlyProvides(root, IRoot)
>>> o1 = Location()
>>> o2 = Location()

>>> LocationPhysicallyLocatable(o2).getParent()
Traceback (most recent call last):
TypeError: ('Not enough context information to get parent', <zope.location.location.Location object at 0x...>)

>>> o1.__parent__ = root
>>> LocationPhysicallyLocatable(o1).getParent() == root
True

>>> o2.__parent__ = o1
>>> LocationPhysicallyLocatable(o2).getParent() == o1
True

	
getParents()[source]

	See ILocationInfo.

>>> from zope.interface import directlyProvides
>>> from zope.interface import noLongerProvides
>>> from zope.location.interfaces import IRoot
>>> from zope.location.location import Location
>>> from zope.location.traversing import LocationPhysicallyLocatable
>>> root = Location()
>>> directlyProvides(root, IRoot)
>>> o1 = Location()
>>> o2 = Location()
>>> o1.__parent__ = root
>>> o2.__parent__ = o1
>>> LocationPhysicallyLocatable(o2).getParents() == [o1, root]
True

If the last parent is not an IRoot object, TypeError will be
raised as statet before.

>>> noLongerProvides(root, IRoot)
>>> LocationPhysicallyLocatable(o2).getParents()
Traceback (most recent call last):
...
TypeError: Not enough context information to get all parents

	
getName()[source]

	See ILocationInfo

>>> from zope.location.location import Location
>>> from zope.location.traversing import LocationPhysicallyLocatable
>>> o1 = Location(); o1.__name__ = u'o1'
>>> LocationPhysicallyLocatable(o1).getName()
u'o1'

	
getNearestSite()[source]

	See ILocationInfo

>>> from zope.interface import directlyProvides
>>> from zope.component.interfaces import ISite
>>> from zope.location.interfaces import IRoot
>>> from zope.location.location import Location
>>> from zope.location.traversing import LocationPhysicallyLocatable
>>> o1 = Location()
>>> o1.__name__ = 'o1'
>>> LocationPhysicallyLocatable(o1).getNearestSite()
Traceback (most recent call last):
...
TypeError: Not enough context information to get all parents

>>> root = Location()
>>> directlyProvides(root, IRoot)
>>> o1 = Location()
>>> o1.__name__ = 'o1'
>>> o1.__parent__ = root
>>> LocationPhysicallyLocatable(o1).getNearestSite() is root
True

>>> directlyProvides(o1, ISite)
>>> LocationPhysicallyLocatable(o1).getNearestSite() is o1
True

>>> o2 = Location()
>>> o2.__parent__ = o1
>>> LocationPhysicallyLocatable(o2).getNearestSite() is o1
True

	
class zope.location.traversing.RootPhysicallyLocatable(context)[source]

	Provide location information for the root object

This adapter is very simple, because there’s no places to search
for parents and nearest sites, so we are only working with context
object, knowing that its the root object already.

>>> from zope.interface.verify import verifyObject
>>> from zope.location.interfaces import ILocationInfo
>>> from zope.location.traversing import RootPhysicallyLocatable
>>> info = RootPhysicallyLocatable(None)
>>> verifyObject(ILocationInfo, info)
True

	
getRoot()[source]

	See ILocationInfo

No need to search for root when our context is already root :)

>>> from zope.location.traversing import RootPhysicallyLocatable
>>> o1 = object()
>>> RootPhysicallyLocatable(o1).getRoot() is o1
True

	
getPath()[source]

	See ILocationInfo

Root object is at the top of the tree, so always return /.

>>> from zope.location.traversing import RootPhysicallyLocatable
>>> o1 = object()
>>> RootPhysicallyLocatable(o1).getPath()
u'/'

	
getParent()[source]

	See ILocationInfo.

Returns None if the object is a containment root.
Raises TypeError if the object doesn’t have enough context to get the
parent.

>>> from zope.location.traversing import RootPhysicallyLocatable
>>> o1 = object()
>>> RootPhysicallyLocatable(o1).getParent() is None
True

	
getParents()[source]

	See ILocationInfo

There’s no parents for the root object, return empty list.

>>> from zope.location.traversing import RootPhysicallyLocatable
>>> o1 = object()
>>> RootPhysicallyLocatable(o1).getParents()
[]

	
getName()[source]

	See ILocationInfo

Always return empty unicode string for the root object

>>> from zope.location.traversing import RootPhysicallyLocatable
>>> o1 = object()
>>> RootPhysicallyLocatable(o1).getName()
u''

	
getNearestSite()[source]

	See ILocationInfo

Return object itself as the nearest site, because there’s no
other place to look for. It’s also usual that the root is the
site as well.

>>> from zope.location.traversing import RootPhysicallyLocatable
>>> o1 = object()
>>> RootPhysicallyLocatable(o1).getNearestSite() is o1
True

 Copyright 2012, Zope Foundation Contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	zope.location 4.0 documentation

Hacking on zope.location

Getting the Code

The main repository for zope.location is in the Zope Foundation
Github repository:

https://github.com/zopefoundation/zope.location

You can get a read-only checkout from there:

$ git clone https://github.com/zopefoundation/zope.location.git

or fork it and get a writeable checkout of your fork:

$ git clone git@github.com/jrandom/zope.location.git

The project also mirrors the trunk from the Github repository as a
Bazaar branch on Launchpad:

https://code.launchpad.net/zope.location

You can branch the trunk from there using Bazaar:

$ bzr branch lp:zope.location

Working in a virtualenv

Installing

If you use the virtualenv package to create lightweight Python
development environments, you can run the tests using nothing more
than the python binary in a virtualenv. First, create a scratch
environment:

$ /path/to/virtualenv --no-site-packages /tmp/hack-zope.location

Next, get this package registered as a “development egg” in the
environment:

$ /tmp/hack-zope.location/bin/python setup.py develop

Running the tests

Then, you canrun the tests using the build-in setuptools testrunner:

$ /tmp/hack-zope.location/bin/python setup.py test -q
...
--
Ran 83 tests in 0.037s

OK

If you have the nose package installed in the virtualenv, you can
use its testrunner too:

$ /tmp/hack-zope.location/bin/nosetests
...
--
Ran 87 tests in 0.037s

OK

If you have the coverage pacakge installed in the virtualenv,
you can see how well the tests cover the code:

$ /tmp/hack-zope.location/bin/easy_install nose coverage
...
$ /tmp/hack-zope.location/bin/nosetests --with coverage
...
Name Stmts Miss Cover Missing
--
zope.location 5 0 100%
zope.location._compat 2 0 100%
zope.location.interfaces 23 0 100%
zope.location.location 61 0 100%
zope.location.pickling 14 0 100%
zope.location.traversing 80 0 100%
--
TOTAL 185 0 100%
--
Ran 87 tests in 0.315s

OK

Building the documentation

zope.location uses the nifty Sphinx documentation system
for building its docs. Using the same virtualenv you set up to run the
tests, you can build the docs:

$ /tmp/hack-zope.location/bin/easy_install \
 Sphinx repoze.sphinx.autoitnerface zope.component
...
$ cd docs
$ PATH=/tmp/hack-zope.location/bin:$PATH make html
sphinx-build -b html -d _build/doctrees . _build/html
...
build succeeded.

Build finished. The HTML pages are in _build/html.

You can also test the code snippets in the documentation:

$ PATH=/tmp/hack-zope.location/bin:$PATH make doctest
sphinx-build -b doctest -d _build/doctrees . _build/doctest
...
running tests...

...

Doctest summary
===============
 187 tests
 0 failures in tests
 0 failures in setup code
 0 failures in cleanup code
build succeeded.
Testing of doctests in the sources finished, look at the results in _build/doctest/output.txt.

Using zc.buildout

Setting up the buildout

zope.location ships with its own buildout.cfg file and
bootstrap.py for setting up a development buildout:

$ /path/to/python2.7 bootstrap.py
...
Generated script '.../bin/buildout'
$ bin/buildout
Develop: '/home/jrandom/projects/Zope/zope.location/.'
...
Got coverage 3.7.1

Running the tests

You can now run the tests:

$ bin/test --all
Running zope.testing.testrunner.layer.UnitTests tests:
 Set up zope.testing.testrunner.layer.UnitTests in 0.000 seconds.
 Ran 79 tests with 0 failures and 0 errors in 0.000 seconds.
Tearing down left over layers:
 Tear down zope.testing.testrunner.layer.UnitTests in 0.000 seconds.

Using tox

Running Tests on Multiple Python Versions

tox [http://tox.testrun.org/latest/] is a Python-based test automation
tool designed to run tests against multiple Python versions. It creates
a virtualenv for each configured version, installs the current package
and configured dependencies into each virtualenv, and then runs the
configured commands.

zope.location configures the following tox environments via
its tox.ini file:

	The py26, py27, py33, py34, and pypy environments
builds a virtualenv with pypy,
installs zope.location and dependencies, and runs the tests
via python setup.py test -q.

	The coverage environment builds a virtualenv with python2.6,
installs zope.location, installs
nose and coverage, and runs nosetests with statement
coverage.

	The docs environment builds a virtualenv with python2.6, installs
zope.location, installs Sphinx and
dependencies, and then builds the docs and exercises the doctest snippets.

This example requires that you have a working python2.6 on your path,
as well as installing tox:

$ tox -e py26
GLOB sdist-make: /home/jrandom/projects/Zope/Z3/zope.location/setup.py
py26 create: /home/jrandom/projects/Zope/Z3/zope.location/.tox/py26
py26 installdeps: zope.configuration, zope.copy, zope.interface, zope.proxy, zope.schema
py26 inst: /home/jrandom/projects/Zope/Z3/zope.location/.tox/dist/zope.location-4.0.4.dev0.zip
py26 runtests: PYTHONHASHSEED='3489368878'
py26 runtests: commands[0] | python setup.py test -q
running test
...
...
--
Ran 83 tests in 0.066s

OK
___________________________________ summary ____________________________________
 py26: commands succeeded
 congratulations :)

Running tox with no arguments runs all the configured environments,
including building the docs and testing their snippets:

$ tox
GLOB sdist-make: .../zope.location/setup.py
py26 sdist-reinst: .../zope.location/.tox/dist/zope.location-4.0.2dev.zip
...
Doctest summary
===============
 187 tests
 0 failures in tests
 0 failures in setup code
 0 failures in cleanup code
build succeeded.
___________________________________ summary ____________________________________
 py26: commands succeeded
 py27: commands succeeded
 py32: commands succeeded
 py33: commands succeeded
 py34: commands succeeded
 pypy: commands succeeded
 coverage: commands succeeded
 docs: commands succeeded
 congratulations :)

Contributing to zope.location

Submitting a Bug Report

zope.location tracks its bugs on Github:

https://github.com/zopefoundation/zope.location/issues

Please submit bug reports and feature requests there.

Sharing Your Changes

Note

Please ensure that all tests are passing before you submit your code.
If possible, your submission should include new tests for new features
or bug fixes, although it is possible that you may have tested your
new code by updating existing tests.

If have made a change you would like to share, the best route is to fork
the Githb repository, check out your fork, make your changes on a branch
in your fork, and push it. You can then submit a pull request from your
branch:

https://github.com/zopefoundation/zope.location/pulls

If you branched the code from Launchpad using Bazaar, you have another
option: you can “push” your branch to Launchpad:

$ bzr push lp:~jrandom/zope.location/cool_feature

After pushing your branch, you can link it to a bug report on Github,
or request that the maintainers merge your branch using the Launchpad
“merge request” feature.

 Copyright 2012, Zope Foundation Contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	zope.location 4.0 documentation

 Python Module Index

 z

 			

 		
 z	

 	[image: -]
 	
 zope	

 	
 	
 zope.location.interfaces	

 	
 	
 zope.location.location	

 	
 	
 zope.location.traversing	

 Copyright 2012, Zope Foundation Contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	zope.location 4.0 documentation

Index

 _
 | G
 | I
 | L
 | R
 | S
 | Z

_

 	

 	__name__ (zope.location.interfaces.ILocation attribute)

 	

 	__parent__ (zope.location.interfaces.ILocation attribute)

G

 	

 	getName() (zope.location.interfaces.ILocationInfo method)

 	

 	(zope.location.traversing.LocationPhysicallyLocatable method)

 	(zope.location.traversing.RootPhysicallyLocatable method)

 	getNearestSite() (zope.location.interfaces.ILocationInfo method)

 	

 	(zope.location.traversing.LocationPhysicallyLocatable method)

 	(zope.location.traversing.RootPhysicallyLocatable method)

 	getParent() (zope.location.interfaces.ILocationInfo method)

 	

 	(zope.location.traversing.LocationPhysicallyLocatable method)

 	(zope.location.traversing.RootPhysicallyLocatable method)

 	

 	getParents() (zope.location.interfaces.ILocationInfo method)

 	

 	(zope.location.traversing.LocationPhysicallyLocatable method)

 	(zope.location.traversing.RootPhysicallyLocatable method)

 	getPath() (zope.location.interfaces.ILocationInfo method)

 	

 	(zope.location.traversing.LocationPhysicallyLocatable method)

 	(zope.location.traversing.RootPhysicallyLocatable method)

 	getRoot() (zope.location.interfaces.ILocationInfo method)

 	

 	(zope.location.traversing.LocationPhysicallyLocatable method)

 	(zope.location.traversing.RootPhysicallyLocatable method)

I

 	

 	IContained (interface in zope.location.interfaces)

 	ILocation (interface in zope.location.interfaces)

 	ILocationInfo (interface in zope.location.interfaces)

 	

 	inside() (in module zope.location.location)

 	IRoot (interface in zope.location.interfaces)

 	ISublocations (interface in zope.location.interfaces)

L

 	

 	locate() (in module zope.location.location)

 	located() (in module zope.location.location)

 	Location (class in zope.location.location)

 	LocationError

 	

 	LocationIterator() (in module zope.location.location)

 	LocationPhysicallyLocatable (class in zope.location.traversing)

 	LocationProxy (class in zope.location.location)

R

 	

 	RootPhysicallyLocatable (class in zope.location.traversing)

S

 	

 	sublocations() (zope.location.interfaces.ISublocations method)

Z

 	

 	zope.location.interfaces (module)

 	zope.location.location (module)

 	

 	zope.location.traversing (module)

 Copyright 2012, Zope Foundation Contributors.
 Created using Sphinx 1.2.2.

 _static/plus.png

_static/minus.png

_static/comment.png

_static/up.png

_static/down.png

_static/ajax-loader.gif

_static/comment-close.png

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_modules/zope/location/traversing.html

 Navigation

 		
 index

 		
 modules |

 		zope.location 4.0 documentation »

 		Module code »

 Source code for zope.location.traversing

##
#
Copyright (c) 2003-2009 Zope Foundation and Contributors.
All Rights Reserved.
#
This software is subject to the provisions of the Zope Public License,
Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution.
THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED
WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS
FOR A PARTICULAR PURPOSE.
#
##
"""Classes to support implenting IContained
"""
__docformat__ = 'restructuredtext'

from zope.interface import implementer

from zope.location.interfaces import ILocationInfo
from zope.location.interfaces import IRoot
from zope.location.interfaces import ISite # zope.component, if present
from zope.location._compat import u

@implementer(ILocationInfo)
[docs]class LocationPhysicallyLocatable(object):
 """Provide location information for location objects
 """
 def __init__(self, context):
 self.context = context

[docs] def getRoot(self):
 """See ILocationInfo.
 """
 context = self.context
 max = 9999
 while context is not None:
 if IRoot.providedBy(context):
 return context
 context = context.__parent__
 max -= 1
 if max < 1:
 raise TypeError("Maximum location depth exceeded, "
 "probably due to a a location cycle.")

 raise TypeError("Not enough context to determine location root")

[docs] def getPath(self):
 """See ILocationInfo.
 """
 path = []
 context = self.context
 max = 9999
 while context is not None:
 if IRoot.providedBy(context):
 if path:
 path.append('')
 path.reverse()
 return u('/').join(path)
 else:
 return u('/')
 path.append(context.__name__)
 context = context.__parent__
 max -= 1
 if max < 1:
 raise TypeError("Maximum location depth exceeded, "
 "probably due to a a location cycle.")

 raise TypeError("Not enough context to determine location root")

[docs] def getParent(self):
 """See ILocationInfo.
 """
 parent = getattr(self.context, '__parent__', None)
 if parent is not None:
 return parent

 raise TypeError('Not enough context information to get parent',
 self.context)

[docs] def getParents(self):
 """See ILocationInfo.
 """
 # XXX Merge this implementation with getPath. This was refactored
 # from zope.traversing.
 parents = []
 w = self.context
 while 1:
 w = getattr(w, '__parent__', None)
 if w is None:
 break
 parents.append(w)

 if parents and IRoot.providedBy(parents[-1]):
 return parents

 raise TypeError("Not enough context information to get all parents")

[docs] def getName(self):
 """See ILocationInfo
 """
 return self.context.__name__

[docs] def getNearestSite(self):
 """See ILocationInfo
 """
 if ISite.providedBy(self.context):
 return self.context
 for parent in self.getParents():
 if ISite.providedBy(parent):
 return parent
 return self.getRoot()

@implementer(ILocationInfo)
[docs]class RootPhysicallyLocatable(object):
 """Provide location information for the root object

 This adapter is very simple, because there's no places to search
 for parents and nearest sites, so we are only working with context
 object, knowing that its the root object already.
 """
 def __init__(self, context):
 self.context = context

[docs] def getRoot(self):
 """See ILocationInfo
 """
 return self.context

[docs] def getPath(self):
 """See ILocationInfo
 """
 return u('/')

[docs] def getParent(self):
 """See ILocationInfo.
 """
 return None

[docs] def getParents(self):
 """See ILocationInfo
 """
 return []

[docs] def getName(self):
 """See ILocationInfo
 """
 return u('')

[docs] def getNearestSite(self):
 """See ILocationInfo
 """
 return self.context

 © Copyright 2012, Zope Foundation Contributors.
 Created using Sphinx 1.2.2.

search.html

 Navigation

 		
 index

 		
 modules |

 		zope.location 4.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Zope Foundation Contributors.
 Created using Sphinx 1.2.2.

_modules/zope/location/location.html

 Navigation

 		
 index

 		
 modules |

 		zope.location 4.0 documentation »

 		Module code »

 Source code for zope.location.location

##
#
Copyright (c) 2003-2009 Zope Foundation and Contributors.
All Rights Reserved.
#
This software is subject to the provisions of the Zope Public License,
Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution.
THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED
WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS
FOR A PARTICULAR PURPOSE.
#
##
"""Location support
"""
__docformat__ = 'restructuredtext'

from zope.interface import implementer
from zope.proxy import ProxyBase
from zope.proxy import getProxiedObject
from zope.proxy import non_overridable
from zope.proxy.decorator import DecoratorSpecificationDescriptor

from zope.location.interfaces import ILocation

@implementer(ILocation)
[docs]class Location(object):
 """Mix-in that implements ILocation.

 It provides the `__parent__` and `__name__` attributes.
 """

 __parent__ = None
 __name__ = None

[docs]def locate(obj, parent, name=None):
 """Update a location's coordinates."""
 obj.__parent__ = parent
 obj.__name__ = name

[docs]def located(obj, parent, name=None):
 """Ensure and return the location of an object.

 Updates the location's coordinates.
 """
 location = ILocation(obj)
 locate(location, parent, name)
 return location

[docs]def LocationIterator(object):
 """Iterate over an object and all of its parents."""
 while object is not None:
 yield object
 object = getattr(object, '__parent__', None)

[docs]def inside(l1, l2):
 """Test whether l1 is a successor of l2.

 l1 is a successor of l2 if l2 is in the chain of parents of l1 or l2
 is l1.

 """
 while l1 is not None:
 if l1 is l2:
 return True
 l1 = getattr(l1, '__parent__', None)
 return False

class ClassAndInstanceDescr(object):

 def __init__(self, *args):
 self.funcs = args

 def __get__(self, inst, cls):
 if inst is None:
 return self.funcs[1](cls)
 return self.funcs[0](inst)

@implementer(ILocation)
[docs]class LocationProxy(ProxyBase):
 """Location-object proxy

 This is a non-picklable proxy that can be put around objects that
 don't implement `ILocation`.
 """
 __slots__ = ('__parent__', '__name__')
 __safe_for_unpickling__ = True

 __doc__ = ClassAndInstanceDescr(
 lambda inst: getProxiedObject(inst).__doc__,
 lambda cls, __doc__ = __doc__: __doc__,
)

 def __new__(self, ob, container=None, name=None):
 return ProxyBase.__new__(self, ob)

 def __init__(self, ob, container=None, name=None):
 ProxyBase.__init__(self, ob)
 self.__parent__ = container
 self.__name__ = name

 def __getattribute__(self, name):
 if name in LocationProxy.__dict__:
 return object.__getattribute__(self, name)
 return ProxyBase.__getattribute__(self, name)

 def __setattr__(self, name, value):
 if name in self.__slots__ + getattr(ProxyBase, '__slots__', ()):
 #('_wrapped', '__parent__', '__name__'):
 try:
 return object.__setattr__(self, name, value)
 except TypeError: #pragma NO COVER C Optimization
 return ProxyBase.__setattr__(self, name, value)
 return ProxyBase.__setattr__(self, name, value)

 @non_overridable
 def __reduce__(self, proto=None):
 raise TypeError("Not picklable")
 __reduce_ex__ = __reduce__

 __providedBy__ = DecoratorSpecificationDescriptor()

 © Copyright 2012, Zope Foundation Contributors.
 Created using Sphinx 1.2.2.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		zope.location 4.0 documentation »

 All modules for which code is available

		zope.location.interfaces

		zope.location.location

		zope.location.traversing

 © Copyright 2012, Zope Foundation Contributors.
 Created using Sphinx 1.2.2.

_modules/zope/location/interfaces.html

 Navigation

 		
 index

 		
 modules |

 		zope.location 4.0 documentation »

 		Module code »

 Source code for zope.location.interfaces

##
#
Copyright (c) 2003-2009 Zope Foundation and Contributors.
All Rights Reserved.
#
This software is subject to the provisions of the Zope Public License,
Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution.
THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED
WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS
FOR A PARTICULAR PURPOSE.
#
##
"""Location framework interfaces
"""
__docformat__ = 'restructuredtext'

from zope.interface import Interface
from zope.interface import Attribute
from zope.schema import TextLine

from zope.location._compat import u

[docs]class ILocation(Interface):
 """Objects that can be located in a hierachy.

 Given a parent and a name an object can be located within that parent. The
 locatable object's `__name__` and `__parent__` attributes store this
 information.

 Located objects form a hierarchy that can be used to build file-system-like
 structures. For example in Zope `ILocation` is used to build URLs and to
 support security machinery.

 To retrieve an object from its parent using its name, the `ISublocation`
 interface provides the `sublocations` method to iterate over all objects
 located within the parent. The object searched for can be found by reading
 each sublocation's __name__ attribute.

 """

 __parent__ = Attribute("The parent in the location hierarchy.")

 __name__ = TextLine(
 title=u("The name within the parent"),
 description=u("The object can be looked up from the parent's "
 "sublocations using this name."),
 required=False,
 default=None)

The IContained interface was moved from zope.container to here in
zope.container 3.8.2 to break dependency cycles. It is not actually
used within this package, but is depended upon by external
consumers.

[docs]class IContained(ILocation):
 """Objects contained in containers."""

[docs]class ILocationInfo(Interface):
 """Provides supplemental information for located objects.

 Requires that the object has been given a location in a hierarchy.

 """

[docs] def getRoot():
 """Return the root object of the hierarchy."""

[docs] def getPath():
 """Return the physical path to the object as a string.

 Uses '/' as the path segment separator.

 """

[docs] def getParent():
 """Returns the container the object was traversed via.

 Returns None if the object is a containment root.
 Raises TypeError if the object doesn't have enough context to get the
 parent.

 """

[docs] def getParents():
 """Returns a list starting with the object's parent followed by
 each of its parents.

 Raises a TypeError if the object is not connected to a containment
 root.

 """

[docs] def getName():
 """Return the last segment of the physical path."""

[docs] def getNearestSite():
 """Return the site the object is contained in

 If the object is a site, the object itself is returned.

 """

[docs]class ISublocations(Interface):
 """Provide access to sublocations of an object.

 All objects with the same parent object are called the ``sublocations`` of
 that parent.

 """

[docs] def sublocations():
 """Return an iterable of the object's sublocations."""

[docs]class IRoot(Interface):
 """Marker interface to designate root objects within a location hierarchy.
 """

[docs]class LocationError(KeyError, LookupError):
 """There is no object for a given location."""

Soft dependency on zope.component.
#
Also, these interfaces used to be defined here directly, so this provides
backward-compatibility

try:
 from zope.component.interfaces import ISite
except ImportError: #pragma NO COVER
 class ISite(Interface):
 pass

 © Copyright 2012, Zope Foundation Contributors.
 Created using Sphinx 1.2.2.

