

zope.location

Contents:

	Using zope.location
	Location

	inside()

	LocationProxy

	LocationInterator()

	located()

	zope.location API
	zope.location.interfaces

	zope.location.location

	zope.location.traversing

	Hacking on zope.location
	Getting the Code

	Working in a virtualenv

	Using zc.buildout

	Using tox

	Contributing to zope.location

Indices and tables

	Index

	Module Index

	Search Page

Using zope.location

Location

The Location base class is a mix-in that defines __parent__ and
__name__ attributes.

Usage within an Object field:

>>> from zope.interface import implementer, Interface
>>> from zope.schema import Object
>>> from zope.schema.fieldproperty import FieldProperty
>>> from zope.location.interfaces import ILocation
>>> from zope.location.location import Location

>>> class IA(Interface):
... location = Object(schema=ILocation, required=False, default=None)
>>> @implementer(IA)
... class A(object):
... location = FieldProperty(IA['location'])

>>> a = A()
>>> a.location = Location()

>>> loc = Location(); loc.__name__ = u'foo'
>>> a.location = loc

>>> loc = Location(); loc.__name__ = None
>>> a.location = loc

>>> loc = Location(); loc.__name__ = b'foo'
>>> a.location = loc
Traceback (most recent call last):
...
WrongContainedType: ([WrongType('foo', <type 'unicode'>, '__name__')], 'location')

inside()

The inside function tells if l1 is inside l2. L1 is inside l2 if l2 is an
ancestor of l1.

>>> o1 = Location()
>>> o2 = Location(); o2.__parent__ = o1
>>> o3 = Location(); o3.__parent__ = o2
>>> o4 = Location(); o4.__parent__ = o3

>>> from zope.location.location import inside

>>> inside(o1, o1)
True

>>> inside(o2, o1)
True

>>> inside(o3, o1)
True

>>> inside(o4, o1)
True

>>> inside(o1, o4)
False

>>> inside(o1, None)
False

LocationProxy

LocationProxy is a non-picklable proxy that can be put around
objects that don’t implement ILocation.

>>> from zope.location.location import LocationProxy
>>> l = [1, 2, 3]
>>> ILocation.providedBy(l)
False
>>> p = LocationProxy(l, "Dad", "p")
>>> p
[1, 2, 3]
>>> ILocation.providedBy(p)
True
>>> p.__parent__
'Dad'
>>> p.__name__
'p'

>>> import pickle
>>> p2 = pickle.dumps(p)
Traceback (most recent call last):
...
TypeError: Not picklable

Proxies should get their doc strings from the object they proxy:

>>> p.__doc__ == l.__doc__
True

If we get a “located class” somehow, its doc string well be available
through proxy as well:

>>> class LocalClass(object):
... """This is class that can be located"""

>>> p = LocationProxy(LocalClass)
>>> p.__doc__ == LocalClass.__doc__
True

LocationInterator()

This function allows us to iterate over object and all its parents.

>>> from zope.location.location import LocationIterator

>>> o1 = Location()
>>> o2 = Location()
>>> o3 = Location()
>>> o3.__parent__ = o2
>>> o2.__parent__ = o1

>>> iter = LocationIterator(o3)
>>> next(iter) is o3
True
>>> next(iter) is o2
True
>>> next(iter) is o1
True
>>> next(iter)
Traceback (most recent call last):
...
StopIteration

located()

located locates an object in another and returns it:

>>> from zope.location.location import located
>>> a = Location()
>>> parent = Location()
>>> a_located = located(a, parent, 'a')
>>> a_located is a
True
>>> a_located.__parent__ is parent
True
>>> a_located.__name__
'a'

If we locate the object again, nothing special happens:

>>> a_located_2 = located(a_located, parent, 'a')
>>> a_located_2 is a_located
True

If the object does not provide ILocation an adapter can be provided:

>>> import zope.interface
>>> import zope.component
>>> sm = zope.component.getGlobalSiteManager()
>>> sm.registerAdapter(LocationProxy, required=(zope.interface.Interface,))

>>> l = [1, 2, 3]
>>> parent = Location()
>>> l_located = located(l, parent, 'l')
>>> l_located.__parent__ is parent
True
>>> l_located.__name__
'l'
>>> l_located is l
False
>>> type(l_located)
<class 'zope.location.location.LocationProxy'>
>>> l_located_2 = located(l_located, parent, 'l')
>>> l_located_2 is l_located
True

When changing the name, we still do not get a different proxied object:

>>> l_located_3 = located(l_located, parent, 'new-name')
>>> l_located_3 is l_located_2
True

>>> sm.unregisterAdapter(LocationProxy, required=(zope.interface.Interface,))
True

zope.location API

zope.location.interfaces

zope.location.location

zope.location.traversing

Hacking on zope.location

Getting the Code

The main repository for zope.location is in the Zope Foundation
Github repository:

https://github.com/zopefoundation/zope.location

You can get a read-only checkout from there:

$ git clone https://github.com/zopefoundation/zope.location.git

or fork it and get a writeable checkout of your fork:

$ git clone git@github.com/jrandom/zope.location.git

The project also mirrors the trunk from the Github repository as a
Bazaar branch on Launchpad:

https://code.launchpad.net/zope.location

You can branch the trunk from there using Bazaar:

$ bzr branch lp:zope.location

Working in a virtualenv

Installing

If you use the virtualenv package to create lightweight Python
development environments, you can run the tests using nothing more
than the python binary in a virtualenv. First, create a scratch
environment:

$ /path/to/virtualenv --no-site-packages /tmp/hack-zope.location

Next, get this package registered as a “development egg” in the
environment:

$ /tmp/hack-zope.location/bin/python setup.py develop

Running the tests

Then, you canrun the tests using the build-in setuptools testrunner:

$ /tmp/hack-zope.location/bin/python setup.py test -q
...
--
Ran 83 tests in 0.037s

OK

If you have the nose package installed in the virtualenv, you can
use its testrunner too:

$ /tmp/hack-zope.location/bin/nosetests
...
--
Ran 87 tests in 0.037s

OK

If you have the coverage pacakge installed in the virtualenv,
you can see how well the tests cover the code:

$ /tmp/hack-zope.location/bin/easy_install nose coverage
...
$ /tmp/hack-zope.location/bin/nosetests --with coverage
...
Name Stmts Miss Cover Missing
--
zope.location 5 0 100%
zope.location._compat 2 0 100%
zope.location.interfaces 23 0 100%
zope.location.location 61 0 100%
zope.location.pickling 14 0 100%
zope.location.traversing 80 0 100%
--
TOTAL 185 0 100%
--
Ran 87 tests in 0.315s

OK

Building the documentation

zope.location uses the nifty Sphinx documentation system
for building its docs. Using the same virtualenv you set up to run the
tests, you can build the docs:

$ /tmp/hack-zope.location/bin/easy_install \
 Sphinx repoze.sphinx.autoitnerface zope.component
...
$ cd docs
$ PATH=/tmp/hack-zope.location/bin:$PATH make html
sphinx-build -b html -d _build/doctrees . _build/html
...
build succeeded.

Build finished. The HTML pages are in _build/html.

You can also test the code snippets in the documentation:

$ PATH=/tmp/hack-zope.location/bin:$PATH make doctest
sphinx-build -b doctest -d _build/doctrees . _build/doctest
...
running tests...

...

Doctest summary
===============
 187 tests
 0 failures in tests
 0 failures in setup code
 0 failures in cleanup code
build succeeded.
Testing of doctests in the sources finished, look at the results in _build/doctest/output.txt.

Using zc.buildout

Setting up the buildout

zope.location ships with its own buildout.cfg file and
bootstrap.py for setting up a development buildout:

$ /path/to/python2.7 bootstrap.py
...
Generated script '.../bin/buildout'
$ bin/buildout
Develop: '/home/jrandom/projects/Zope/zope.location/.'
...
Got coverage 3.7.1

Running the tests

You can now run the tests:

$ bin/test --all
Running zope.testing.testrunner.layer.UnitTests tests:
 Set up zope.testing.testrunner.layer.UnitTests in 0.000 seconds.
 Ran 79 tests with 0 failures and 0 errors in 0.000 seconds.
Tearing down left over layers:
 Tear down zope.testing.testrunner.layer.UnitTests in 0.000 seconds.

Using tox

Running Tests on Multiple Python Versions

tox [http://tox.testrun.org/latest/] is a Python-based test automation
tool designed to run tests against multiple Python versions. It creates
a virtualenv for each configured version, installs the current package
and configured dependencies into each virtualenv, and then runs the
configured commands.

zope.location configures the following tox environments via
its tox.ini file:

	The py26, py27, py33, py34, and pypy environments
builds a virtualenv with pypy,
installs zope.location and dependencies, and runs the tests
via python setup.py test -q.

	The coverage environment builds a virtualenv with python2.6,
installs zope.location, installs
nose and coverage, and runs nosetests with statement
coverage.

	The docs environment builds a virtualenv with python2.6, installs
zope.location, installs Sphinx and
dependencies, and then builds the docs and exercises the doctest snippets.

This example requires that you have a working python2.6 on your path,
as well as installing tox:

$ tox -e py26
GLOB sdist-make: /home/jrandom/projects/Zope/Z3/zope.location/setup.py
py26 create: /home/jrandom/projects/Zope/Z3/zope.location/.tox/py26
py26 installdeps: zope.configuration, zope.copy, zope.interface, zope.proxy, zope.schema
py26 inst: /home/jrandom/projects/Zope/Z3/zope.location/.tox/dist/zope.location-4.0.4.dev0.zip
py26 runtests: PYTHONHASHSEED='3489368878'
py26 runtests: commands[0] | python setup.py test -q
running test
...
...
--
Ran 83 tests in 0.066s

OK
___________________________________ summary ____________________________________
 py26: commands succeeded
 congratulations :)

Running tox with no arguments runs all the configured environments,
including building the docs and testing their snippets:

$ tox
GLOB sdist-make: .../zope.location/setup.py
py26 sdist-reinst: .../zope.location/.tox/dist/zope.location-4.0.2dev.zip
...
Doctest summary
===============
 187 tests
 0 failures in tests
 0 failures in setup code
 0 failures in cleanup code
build succeeded.
___________________________________ summary ____________________________________
 py26: commands succeeded
 py27: commands succeeded
 py32: commands succeeded
 py33: commands succeeded
 py34: commands succeeded
 pypy: commands succeeded
 coverage: commands succeeded
 docs: commands succeeded
 congratulations :)

Contributing to zope.location

Submitting a Bug Report

zope.location tracks its bugs on Github:

https://github.com/zopefoundation/zope.location/issues

Please submit bug reports and feature requests there.

Sharing Your Changes

Note

Please ensure that all tests are passing before you submit your code.
If possible, your submission should include new tests for new features
or bug fixes, although it is possible that you may have tested your
new code by updating existing tests.

If have made a change you would like to share, the best route is to fork
the Githb repository, check out your fork, make your changes on a branch
in your fork, and push it. You can then submit a pull request from your
branch:

https://github.com/zopefoundation/zope.location/pulls

If you branched the code from Launchpad using Bazaar, you have another
option: you can “push” your branch to Launchpad:

$ bzr push lp:~jrandom/zope.location/cool_feature

After pushing your branch, you can link it to a bug report on Github,
or request that the maintainers merge your branch using the Launchpad
“merge request” feature.

Index

 nav.xhtml

 Table of Contents

 		zope.location

 		Using zope.location

 		Location

 		inside()

 		LocationProxy

 		LocationInterator()

 		located()

 		zope.location API

 		zope.location.interfaces

 		zope.location.location

 		zope.location.traversing

 		Hacking on zope.location

 		Getting the Code

 		Working in a virtualenv

 		Installing

 		Running the tests

 		Building the documentation

 		Using zc.buildout

 		Setting up the buildout

 		Running the tests

 		Using tox

 		Running Tests on Multiple Python Versions

 		Contributing to zope.location

 		Submitting a Bug Report

 		Sharing Your Changes

_static/file.png

_static/plus.png

_static/comment.png

_static/down.png

_static/up.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/up-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/minus.png

